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Abstract 

We study the microwave background anisotropy due to superhorizon-size 

perturbations (the Griscbuk-Zel’dovich effect) in open universes with neg& 

tive spatial curvature. Using COBE results on the low-order temperature 

multipole moments, we find that if the homogeneity of the observable Uni- 

verse arises from an early epoch of inflation, the present density parameter 

cannot differ from unity by more than the observed quadrupole auisotropy, 

11 - S&-,1 5 Q N 5 x lo-‘j. Th us, inflation models with low $20 either do not 

fit the microwave background observations or they do not solve the horizon 

problem. 
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The inflationary scenario for the very early universe has proven very attractive, because 

it can simultaneously solve a number of cosmological puzzles, such as the homogeneity of 

the Universe on scales exceeding the particle horizon at early times, the flatness or entropy 

problem, and the origin of density fluctuations for large-scale structure [I]. In this scenario, 

the observed Universe (roughly, the present Hubble volume) represents part of a homoge- 

neous inflated region embedded in an inhomogeneous space-time. On scales beyond the size 

of this homogeneous patch, the initially inhomogeneous distribution of energy-momentum 

that existed prior to inflation is preserved, the scale of the inhomogeneities merely being 

stretched by the expansion. 

In its conventional form, inflation predicts a nearly scale-invariant spectrum of den- 

sit.y perturbations produced by the inflaton field, and that the Universe is observationally 
I 

indistinguishable from being spatially flat &f = 0). In the absence of a cosmological con- 

stant or exotic forms of matter, this implies that the present matter density parameter 

R. z 8~rGp,(t~)/3H; is very close to unity. However, it is not clear that such an Einstein-de 

Sitter Universe jibes with astronomical observations. As is well known, dynamical estimates 

of mass-to-light ratios from galaxy rotation curves and cluster dynamics [2] typically indicate 

i&-J N 0.1 - 0.2. Similar conclusions have..recently been reached from the consistency of the 

ROSAT observations of X-ray emission from the Coma cluster and Big Bang nucleosynthe- 

sis constraints on the baryon density 0B [3]. Determination of the density parameter using 

least-action tracing of the Local Group orbits back in time also points to a low value of R. 

[4]. Moreover, if 00 = 1 the age of the Universe is to = (2/3Ho) = 6.7 x 10gh-‘yrs (where 

the present Hubble parameter is Ho = 1OOh km/sec/Mpc). This is less than globular cluster 

age estimates of t, N 13 - 15 x 10’ yr if h 2 0.5, and a number of extragalactic distance 

indicators suggest h z 0.8. A large age is also indicated by the colors of stellar populations 

of r w ‘o galaxies at high redshift, .Z N 4 [5]. Th e I p resence of galaxies and perhaps even 

protoclusters at z 2 3.5 is also easier to explain in a low-density Universe, where structures 

should have collapsed by t 21 Q{’ - 1 [6]. On larger scales, the situation is still uncertain: - 

several analyses of large-scale peculiar motions suggest higher values of 00. consistent with 
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unity (71, while other methods are consistent with low values of fro [8]. Finally, the hot and 

cold spots in the microwave background recently found by the Tenerife experiment could 

perhaps be an imprint of the curvature scale in an open universe [9]. <> 
..~ ----- 

3 In sum, the current observational status of Ro is at best inconclusive, with much of 

the data pointing to a low-density Universe. In the context of inflation, the simplest way 

to accomodate 0, < 1 is to incorporate a cosmological constant A = 3H$2,,, ret.aining 

spatial flatness by imposing Ro + RA = 1. However, initial studies of observed gravitational 

lens statistics indicate the bound RA s 0.7 [lo], 
5-b 

low&len&$model. 

marginally disfavoring the spatially flat, 

The other logical possibility is an open, negatively curved universe, and various sugges- 

tions have been made to try to accommodate an open, low-$& Universe within inflation [ll]. 

\Vhile the models differ in the mechanisms that drive inflation, their common feature is that 

the homogeneous patch that encompasses the presently observable Universe was inflated by 

just the right number of e-foldings to ensure that 1 - R,-, 11 1; generally, this implies that 

the present size L,-, of the inflated patch is comparable to the current Hubble distance, H;‘. 

Points separated by distances larger than the scale of the inflated homogeneous patch 

have never been in causal contact, and one thus expects large density fluctuations, (bp/p)L r~ 

1, on scales L 2 Lo. However, if the size of the homogeneous region is close to the present 

Hubble radius, such non-linear inhomogeneities on large scales will induce significant mi- 

crowave background anisotropy via the Grischuk-Zel’dovich (GZ) effect [12]. In order of 

magnitude, the quadrupole anisotropy induced by superhorizon-size fluctuations of length- 

scale J. is QL cv (hp/p)~(LHo)-*. The COBE DMR has measured a quadrupole anisotrop> 

of QCOBE = (4.8 f 1.5) x 10m6 from the first year of data and QCO~E = (2.2 f 1.1) x 10m6 
+ 

from the first two years of data [13]. Consequently, assuming order unit.y density fluctua- 

tions on scales L 2 Lo, the size of the inflated patch must be significantly larger than the 

present Hubble radius, Lo > 5OOHo’ [14,15]. 
K c 

H owever, the Grischuk-Zel’dovich analysis was 

performed for a spatially flat ($Y+‘= 0) universe: to self-consistently exclude an open model, _ 

it must be extended to the case of negative curvature. We do this below 
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constraint on Lo generally becomes even tighter when Rc < 1. If the Universe began from 

inhomogeneous initial conditions, the comoving size of the quasi-homogeneous patch that 

encompasses our obsenable universe must extend to at least 500 - 2000 times the present 

Hubble radius. Thus, the required large size of the inflated patch is very improbable in 

.low-Q inflationary models. 

To relate the size of the inflated patch to the local value of Ro we write the Friedmann 

equation as -K = [l - fl(t)]H*(t)a*(t), where a(t) is the global expansion factor and 

A- = +l, - 1, or 0 is the spatial curvature constant. Note that the global topology of the 

inflationary Universe could be quite complex, with e.g., locally Friedmann universes of both 

positive and negative spatial curvature connected by wormhole throats. We will focus on the 

open, negatively curved (K = -1) model, since it is the open model that attracts attention as 

an alternative to the flat Universe on observational grounds. Thus, we can relate the present 

scale Lo of the homogeneous patch to its size L, at the start of inflation, (1 - Ro)HiLi = 

(+:)(l - 0s) ( w h ere subscript ‘s’ denotes quantitites at the onset of inflation). By the 

onset of inflation, we expect that causal microphysical processes could have smoothed out 

initial inhomogeneities only on scales up to the Hubble radius, so that H,L, N 1. This is 

also a sufficient condition for spatial gradients to be subdominant compared to the vacuum 

energy density driving accelerated expansion [16]. Inflation was proposed in part to allow 

1 - II, m 1 as an initial condition, but in any case 1 - fid 5 1. Consequently, we expect 

the present size of the homogeneous patch to satisfy Li s Hi*/(l - Qa) E Rz”,,, i.e., the 

present size of the inflated patch is at most comparable to the present curvature radius 

R C”W : If 1 - Ra < 1, the Universe is nearly spatially flat, and the present curvature radius 

is much larger than the Hubble radius. On the other hand, if 1 - R z 1, then &,,, w H{l, 

implying Lo 5 Hol, and in particular Lo < 5OOH{‘. This simple argument shows that the 

GZ effect is only naturally suppressed in the limit R 0 + 1, and that the required large size of 

the homogeneous domain of our observable Universe implied by the microwave background 

measurements is difficult to produce in Re << 1 inflationary models. However, as noted _ 

above, the effect of spatial curvature on the GZ anisotropy can be significant, and this 
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calculation should be done self-consistently in an open universe. 

Microwave background anisotropies in an open universe have been studied by a number 

of authors [17]. 11’ e write the background metric of the open universe in the form ds* = 

a*(#~* - dx* - sinh*(X)(do* + sin* Odqb’)] , where 71 = / dt/a(t) is conformal time, and 2 

is the comoving radial distance in units of the curvature scale (i.e., the physical distance 

tphys = R,,,,x). For the matter-dominated universe, the scale factor is,given by a(n) = 

a, (cash 77 - l), where a, is a constant and q = 0 corresponds to the initial singularity. At 

a given conformal time, the density parameter is given by 9(q) = 2(cosh n - l)/ sinh* 77. 

Thus, at early times, r,r < 1, the universe is effectively flat, Q(q << 1) z 1, and at late times, 

77 2 1, it is curvature-dominated. 

To describe the propagation of waves in curved space, we expand them in terms of 

eigenfunctions of the Helmholtz equation (V* +Ic*+ 1)f x, 6,4) = 0, where V* is the Laplace 
t! 

operator on the three-surface of constant negative curvature. The solutions are of the form 

X(k x)y,“@J, 4, w h ere Y,;” are the spherical harmonics and the radial eigenfunctions are 

X,(k;X) = (_l)‘+‘(k2+ 1)“2si~h’xdf’1(CoSkX) 
N,-'(k) d(cosh x)‘+’ ’ (1) 

Here IV: = k*(k* + l)...(k* + r*). The normalization is chosen such that in the limit R ---) 1 

the radial eigenfunctions become spherical Bessel functions. For a perturbation of comoving 

wavelength A, the comoving wavenumber k = 2x/X = kphysRcurv. Using this relation and 

the Friedmann equation, the comoving wavenumber corresponding to the size of the inflated 

patch-is ke cv R&/Lo = l/L,H,Jm 2 1. 

Similarly, the microwave background temperature can be expanded in spherical harmon- 

ics on the sky, 6T/T = C olmYlm(B,4), and the multipole moments of the anisotropy are 

then given by the Sachs-Wolfe relation 

(h12> = a / Ia$(q = o)l*lk(n-)l*(,~~i),d~ ’ (2) 
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k(k) = ~~b?o - q/a) + 2 1; gX;(% - q)dq , (3) 

qia denotes the epoch of last scattering, and the gravitational potential fluctuation satisfies 

w?) = w? = vb?)’ with (ignoring the decaying mode) [ 181 

W) = 5 
sinh*v-3qsinhq+4coshn-4 

(cash 77 - 1)3 * (4) 

Note that F(n) = 1 for 120 = 1; in an open universe, F(q) 2 1 for 71 5 1 and decays as 

l/a(n) for n 2 1. Eqs. (1) - (4) all ow one to estimate the anisotropy due to superhorizon-size 

perturbations, with wavelengths A >> H<‘. The potential ip is a gauge-invariant measure 

of the spatial curvature perturbation, related to the density fluctuation by the relativis- 

tic curved-space analogue of the Poisson equation [19]. For perturbations on scales larger 

than the Hubble radius, kq 2 1, it satisfies @k N -&/2 N constant, where 6 is a gauge- 

invariant measure of the density perturbation amplitude, equal to the density fluctuation in 

the longitudinal (conformal Newtonian) gauge [18]. For such long wavelengths, the domi- 

nant anisotropy is generally the quadrupole I = 2 (for some values of Ra, the quadrupole is 

accidentally suppressed, and the main contribution would be the I = 3 octupole moment, as 

we discuss below). The quadrupole anisotropy due to such superhorizon-scale modes is thus 

(1~~1~) N & j,-” ~~~2(k)~2(~&.~2)k2dk . (5) 

, Fig.1 shows the mode contribution l&(k)l* to the quadrupole, for several values of Re, 

for modes outside the present Hubble radius. The suppression at 00 = 0.4 arises from a 

near cancellation of the line-of-sight contribution (the second-term on the RHS of eq. (3)) 

with the last scattering term (see below). We emphasize that for modes outside the scale 

of the homogeneous patch, k 5 ko, the pre-inflation perturbation amplitude 6k is preserved 

and expected to be of order unity. To study the implications of this result, we consider two 

limits: Ra close to unity (1 - Re < 1) and low-density models with 1 - I& w 1. 
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Fig. 1: The quadrupole mode contribution for superhorizon-size perturbations, 16~1, as a function of 

k for Qo = 0.1,0.4, and 0.7. Each curve ends at the value of k corresponding to modes just entering the 

present Hubble radius, km = 1. 

Ra close to 1: Using the relation cash 77 - 1 = 2( 1 - 0)/n, the limit Qe + 1 corresponds 

to taking 7: N 4 1 ( - L?e) -+ 0. Taking this limit in Eq. (1) while keeping kphys fixed, we find 

S,(k; q + 0) !z (1 + k2)q2/15 z 4 (1 + /c*)( 1 - Re)/15. In this limit, the line-of-sight integral 

in Eq. (3) becomes J’(dF/dq)X,2dq N -( 1 + k*)qi/630, which can be neglected compared to 

the last scattering term. As a result, the quadrupole arising from modes with kr,r,-, 5 1 can 

be expressed as 

(~u2~*) cv &-” sn’* 6” dk k*(k* + l)(k* + 4)(/6kl*) . 63) 

The usual flat-space result can be recovered from Eq. (6) by taking the limit X: >> 1 and 
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keeping kphys fixed in the relation kphys = kHod=. Eq. (6) can be used to constrain Re 

with any given pre-inflation power spectrum (16kl*) on scales Ic 5 ko. A plausible assumption 

is that (lS,j*) w k” with n 2. 0, i.e., random Poisson fluctuations (or less). For example, 

such a spectrum would arise if one imagines that prior to inflation the universe consisted 

of uncorrelated, quasi-homogeneous regions of size k,‘. However, quantitatively the result 

does not depend strongly upon the shape of the power spectrum. With the assumption of 

no fine tuning prior to inflation, i.e., (lb(ko)l’) 22 1, an d since in inflationary models ke 2 1. 

the COBE measurement of the quadrupole moment translates eq. (6) into the constraint 

f-to > 1 - u2(COBE) 2~ 1 - 1O-6 . m 

Thus, if an epoch of inflationary expansion was responsible for the homogeneity of our 

observable Universe, the density parameter Ra cannot differ from 1 by more than one part 

in Q-’ N 106. 

Low Ro: We now consider the case of low Re and estimate the scale out to which the 

Universe must be homogeneous in light of the COBE results, independent of considerations of 

inflation, namely we allow ko < 1. If Re is not very close to 0.4 or 1, Fig. 1 shows that t&(k) 

is nearly independent of k for small k, and we can set B*(k) N 82(O) to good approximation 

for k < 1. (This is very different from the spatially flat model, where l&(k)1 = j2(2k) and 

goes to zero as k* at small k). The zero-mode contribution l&(O)1 as a function of & is 

shown in Fig. 2. In this case the quadrupole becomes: 

(~~2~~) = J&(o)/*& 4” $-$16*12)k2dk . (8) 

-Again conservatively assuming an initial spectrum that falls at least as white noise (n 2 0), 

eq. (8) yields a lower bound on the scale k;’ - LoHod- over which the Universe must 

be homogeneous if 00 s 1, 

1041~~(0))*/3 . (9) 

Using Fig. 2, we see that eq. (9) implies that the Universe must t.o be homogeneous over - 

scales k,’ 2 2000 for R. 5 0.1 and over scales kc’ 2 500 for R z 0.5 - 0.8. In inflation 
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models these bounds on ko << 1 require superhorizon-sized correlations prior to inflation. 

LYote that for a given constant value of 16kI’ the quadrupole anisotropy for ke << 1 scales as 

- kit2 for 5-I =landonlyas-ki’*forfl<<l. 

0.1 

0.001 

Fig. 2: [I?,[ at k = 0 as a function of 00. 

i-20 N 0.4: As Figs. 1 and 2 illustrate, the quadrupole due to long wavelength modes 

is suppressed not only at f&j .---) 1 but also accidentally for Qe w 0.4, due to cancellation 
- 

between the last scattering term and the line-of-sight integral. (The positive last scattering 

term dominates at Ra -+ 1, while the negative line-of-sight term dominates at Ro -+ 0.) As 

00 is varied over a small interval around 0.4, the wavenumber where the two terms cancel 

varies over the interval (0, q{‘). While interesting, this suppression cannot make inflation 

and low-00 compatible, 3on 6 the octupowode will 



We have arrived at two results of significance for inflation and open universe models. 

(1) Inflation can produce a homogeneous patch encompassing the observable Universe (the 

present Hubble volume) and be consistent with the microwave background observations 

only if the present density parameter Re differs from unity by no more than 1 part in 

Q &E - 106. (2) On the other hand, if 00 is significantly below 1, the Universe must be 

homogeneous on scales k;’ > (500 - 2000). If this is the case, inflation does not by itself 

solve the horizon problem. Indeed, if we assume that the distribution of quasi-homogeneous 

regions satisfies Poisson statistics, the probability of finding one such region per volume ki3 

in curvature units is P z ki3 x exp(-kc3), which is negligibly small for the ki’ values 

above. If it turns out that the universe is open, Re < 1, this implies that our Hubble 

volume occupies a very special place in the space of initial conditions, which is precisely the 

condition inflation was meant to alleviate. One might then prefer to seek a solution of the 

horizon problem in quantum gravitational effects at the Planck era. 
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